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Abstract

We developed a new 6-year daily, daytime and nighttime, NOAA-14 AVHRR based land surface temperature (LST) dataset over continental
Africa for the period 1995 through 2000. The processing chain was developed within the Global Inventory Modeling and Mapping System
(GIMMS) at NASA's Goddard Space Flight Center. This paper describes the processing methodology used to convert the Global Area Coverage
Level-1b data into LST and collateral data layers, such as sun and view geometries, cloud mask, local time of observation, and latitude and
longitude. We used the Ulivieri et al. [Ulivieri, C., M.M. Castronuovo, R. Francioni, and A. Cardillo (1994), A split window algorithm for
estimating land surface temperature from satellites, Adv. Space Research, 14(3):59–65.] split window algorithm to determine LST values. This
algorithm requires as input values of surface emissivity in AVHRR channels 4 and 5. Thus, we developed continental maps of emissivity using an
ensemble approach that combines laboratory emissivity spectra, MODIS-derived maps of herbaceous and woody fractional cover, and the
UNESCO FAO soil map. A preliminary evaluation of the resulting LST product over a savanna woodland in South Africa showed a bias of
<0.3 K and an uncertainty of <1.3 K for daytime retrievals (<2.5 K for night). More extensive validation is required before statistically significant
uncertainties can be determined. The LST production chain described here could be adapted for any wide field of view sensor (e.g., MODIS,
VIIRS), and the LST product may be suitable for monitoring spatial and temporal temperature trends, or as input to many process models (e.g.,
hydrological, ecosystem).
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Satellite land surface temperature (LST) products provide an
estimate of the kinetic temperature of the earth's surface skin
(Norman & Becker, 1995), i.e., the aggregate surface medium
viewed by the sensor to a depth of about 12 μm. LST is a key
parameter for the understanding of the physics of land surface
processes (Sellers et al., 1988). It can be used for monitoring
vegetation water stress, assessing surface energy balance,
detecting land surface disturbance, and monitoring condition
suitability for insect–vector disease proliferation, among other
uses. Many of these applications are particularly important over
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the African continent given its large expanse and unique
environmental conditions (e.g., strong wet/dry seasonality).
Satellites offer the opportunity for the synoptic and continental
or global monitoring of LST.

The National Oceanographic and Atmospheric Adminis-
tration's (NOAA) Advanced Very High Resolution Radiometer
(AVHRR) sensor has recorded top-of-atmosphere brightness
temperature in two thermal infrared channels (TIR; channels 4
and 5) from 1981 to the present. These brightness temperatures
depend on surface emittance, and atmospheric absorption and
emission along the path of observation, among other factors.
The surface emittance depends on the skin's kinetic temperature
and emissivity.

At its coarsest resolution, AVHRR samples each 4 km (per
side) at nadir, although pixel size increases with scan angle.
Each Earth location is sampled at least once each day and once
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Table 1
Channel characteristics of the NOAA-14 AVHRR/2

Channel Spectral domain Spectral range (FWHM#) IFOV⁎(mrad×mrad)

1 Visible 0.58–0.68 1.31×1.33
2 Near infrared 0.73–1.10 1.31×1.29
3 Middle infrared 3.55–3.93 1.20×1.30
4 Thermal infrared 10.3–11.3 1.27×1.49
5 Thermal infared 11.5–12.5 1.13×1.27
# FWHM = Full Width Half Maximum of the spectral response function.
⁎ IFOV = Instantaneous Field of View; The AVHRR has a square shaped
detector so the IFOV for each channel has two values. In each dimension, the
IFOV resembles a Gaussian distribution, and the nominal IFOV is the FWHM
value (ITT, 1994).
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each night. Thus, the AVHRR record is valuable for monitoring
and trending of many global change phenomena.

Several AVHRR-derived temperature products have been
created to capitalize on the long term record of AVHRR thermal
infrared measurements. For example, the second-generation of
the Global Vegetation Index (GVI) dataset includes top-of-the-
atmosphere brightness temperature values in channels 4 and 5
for the daytime overpasses of NOAA-9 and NOAA-11, from
1985 to 1994. The global products are provided at 0.15°
resolution and at weekly and monthly time scales. An additional
5-year monthly climatology is also available (Gutman et al.,
1995).

The World Land Surface Temperature Atlas dataset,
produced by the European Space Agency, also provides an
AVHRR temperature product. This dataset relies on brightness
temperature data collected for years 1992 and 1993. The data
consists of 1 km resolution LST fields over Europe, and a
climatic monthly LST at half-degree resolution (Kerr et al.,
1998). A more recent effort by Jin (2004) provides monthly
diurnal-averages of 10-day composites of skin temperature
fields from 1981 to 1998. The dataset is based on typical
patterns of the LST diurnal cycle as determined with a General
Circulation Model (GCM), and was scaled to 0.5° and 5° spatial
resolutions.

Despite these efforts, no standard global daily AVHRR LST
product exists (Wan et al., 2002). For more than two decades,
the Global Inventory Modeling and Mapping System
(GIMMS), at NASA's Goddard Space Flight Center, has
produced global, multimission AVHRR vegetation index
products. With its Global Area Processing System (GAPS;
Tucker et al., 1994), GIMMS has significantly reduced product
contamination from cloud, atmosphere, bidirectional reflec-
tance and sensor artifacts. The scientific value of these
products is evident in the major discoveries based on them
(e.g., Myneni et al., 1997; Tucker et al., 2001; Nemani et al.,
2003).

Although GIMMS has packaged AVHRR bands 4 and 5 with
some products (e.g., the NASA AVHRR Pathfinder), it had no
LST processing segment. In this article, we describe our
adaptation of the GIMMS system to generate a standardized
daily LST product over continental Africa. Our goal was to
reuse validated GAPS segments (e.g., image navigation) to the
extent possible, and develop new segments (e.g., emissivity
mapping, LST estimation) as necessary. The resulting product
spans a 6-year period (1995–2000), equivalent to the
operational lifetime of the NOAA-14 satellite. It is designed
to support multi-product long temporal studies as well as
application and decision support systems (e.g., water resources
management).

The outline of this article is as follows. First, we describe
characteristics of the AVHRR and NOAA orbiters. We then
present the methodology and algorithms developed to generate
the new LST product, including the processing system used to
convert the Level-1b Global Area Coverage (GAC) data into
top-of-atmosphere brightness temperature. We particularly
emphasize the preproduction estimation of surface emissivity
in the AVHRR bands, since no prior maps existed to our
knowledge. Collateral data fields, such as cloud mask and the
local solar time of observation, are also described. We conclude
with an evaluation of the LST product over a savanna woodland
in southern Africa.

2. Data

2.1. NOAA-14 AVHRR

Our LST product is derived from the AVHRR sensor
onboard NOAA-14, a polar-orbiting satellite in NOAA's Polar
Operational Environmental Satellites (POES) constellation.
Below we briefly describe aspects of POES and AVHRR
relevant to this article. Readers desiring further details are
encouraged to consult Kidwell (1991) or Cracknell (1997).

The POES satellite orbits are nominally sun synchronous.
They have an orbital inclination of 98.9° and period of
approximately 102 min, resulting in 14.1 orbits per day.
Consecutive equatorial crossings are separated by about 25.5°
longitude (at the equator), moving from East to West with time.
The orbital characteristics allow the sensor to view an earth
location under the same geometric conditions (sun and view
angles) each 9 days. Under nominal conditions, NOAA-14
crosses the equator in ascending node (from South to North) at a
local crossing time of 13:30 (Kidwell, 1991). However, the orbit
‘drifted’ to later crossing times (up to 16:30) through its
operational lifetime (Price, 1991).

The Advanced Very High Resolution Radiometer Version 2
sensor (AVHRR/2) on NOAA-14 is a cross-track scanning
system with five spectral channels (Table 1). Each channel has a
nominal spatial resolution of 1.1 km at nadir. The AVHRR/2
rotating mirror measures radiances to approximately ±55° off
nadir, which corresponds to approximately a ±68° view zenith
angle for pixels at the edge of scan. The ground swath is about
2800 km wide.

The commonly-used AVHRR Global Area Coverage (GAC)
product, which offers complete global coverage at reduced
spatial resolution, is created onboard the sensor in real time. A
GAC pixel value represents the mean of four out of each five
consecutive samples along the scan line; only data from each
third scan line are processed and stored. As a result, the spatial
resolution of GAC data near nadir is about 1.1 by 4 km with a
3 km gap between pixels across the scan line. Many users
approximate a GAC pixel as 4.4 km resolution (Fig. 1).
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We estimate LST using the two longwave thermal infrared
bands (channels 4 and 5). These bands were primarily designed
to detect clouds and measure sea surface temperature, however
they have increasingly been exploited for other applications
(e.g., to detect wildfires). Their land utility is limited, however,
since the saturation temperature in channel 4 is 323 K. This
temperature is commonly exceeded by top-of-atmosphere
(TOA) brightness temperatures over arid lands, which both
limits LST accuracy (Pinheiro et al., 2004) and fire detection
potential (Giglio & Justice, 2003).

3. Methods

We provide brief details on each major segment of our LST
processing system, starting with previously-developed seg-
ments (e.g., from GAPS or in published literature), then moving
to newly-developed segments (e.g., emissivity fields). A
schematic representation (Fig. 2) of the chain serves as a
roadmap to this section.

3.1. General processing segments

3.1.1. Data ingest, calibration and navigation
Our system ingests NOAA-14 AVHRR/2 GAC data in

Level-1b format. We obtain these as global granules from
NOAA Satellite Active Archive (http://www.saa.noaa.gov; now
called the Comprehensive Large Array data Stewardship
System, or CLASS). We subset these for the African continent
and distinguish between daytime and nighttime overpasses. We
extract the GAC image data (digital numbers for the 5 different
channels) as well as the metadata, including the time code (year,
Julian day, and UTC time of day in milliseconds), quality
control (QC) indicators, calibration coefficients (slope and
intercept values for each of the five channels), zenith angles and
Earth location.

The calibration of the AVHRR/2 thermal infrared channels
is accomplished in two steps using a linear radiometric
calibration and a subsequent non-linear radiometric calibration.
The sensor was designed to view cold space and internal warm
blackbodies as part of its normal scan sequence. This provides
data for determining signal-to-noise ratio, radiometric slopes
(gains) and intercepts (offsets). The gains and offsets are
applied to the sensor counts of the ground target (digital
counts) to estimate an assumed “linear” radiance, following
Eq. (1):

Li ¼ SiX þ Ii ð1Þ
where Li is the radiance in mW/(m2 sr cm−1), X is the input
digital number (ranging from 0 to 1023 counts), and Si and Ii are
respectively the scaled slope and intercept values. The scaled
thermal channel slope values are in units of mW/(m2 sr cm−1)
per count, and the intercept is in mW/(m2 sr cm−1). Because
channels 4 and 5 use HgCdTe detectors, their calibration are
slightly non-linear. Beginning with NOAA-13 AVHRR instru-
ment, a new non-linear radiometric calibration of those two
channels is adopted following Eq. (2):

LiV¼ ALi þ BL2i þ C ð2Þ
where Li′ is the corrected radiance, and A, B and C are
coefficients (see Table 2), specific to each sensor. For more
details on AVHRR thermal infrared channels calibration consult
Kidwell (1995).

We convert radiances into top-of-atmosphere brightness
temperatures using the sensor spectral response function

http://www.saa.noaa.gov


Table 4
CLAVR cloud mask classification

Land Ocean

Condition Flag Condition Flag

Clear 3 Clear 1
Dark Dense Vegetation (DDV) 4 Glint 2
Cloudy or mixed 6 Cloudy or mixed 5
Shadow 8 Shadow 7

Table 5
Products generated for each cloud-free pixel

Products ⁎ Scaling factor

Table 2
Non-linear radiometric calibration for NOAA-14 AVHRR/2 channels 4 and 5

Coefficient Channel 4 Channel 5

A 0.92378 0.96194
B 0.0003822 0.0001742
C 3.72 2.00
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weighting method and the Planck function, i.e., assuming that
Earth emits as a blackbody in the spectral wavelength of
interest, such that,

TðRÞ ¼ c2v

ln 1þ c1v3

L

� � ; ð3Þ

where T is the temperature in Kelvins for the radiance value L, v
is the wave number of interest (in cm−1), and c1 (1.1910659×
10−5 mWm−2 sr−1 cm4) and c2 (1.438833 cm K) are the Planck
constants. Since the above equation is not easily inverted, we
constructed a look-up table of brightness temperature–
radiance pairs for each channel, at increments of 0.01 K. We
assume the valid range of brightness temperatures is between
230 K≤T(L)≤Tb(saturation), where Tb(saturation) corre-
sponds to the upper limit of the given channel's dynamic
range (Table 3). In cases where either channel saturates in our
data set (e.g., over African deserts during the summer; Prata,
2000), we replace the estimated LST with a fill value of −999.

3.1.2. Cloud mask
We implemented CLouds for AVHRR-Phase 1 (CLAVR-1), a

day and night global cloud detection algorithm developed for
AVHRR GAC data (Stowe et al., 1999). The CLAVR-1
algorithm was designed for operational real time processing,
and it classifies each 2×2 GAC pixel array (adjacent pixels on
adjacent scan lines) as clear or other condition. The algorithm is
composed of four different algorithms, each appropriate for one
of the following sampling cases:

(i) over land, for day time overpasses;
(ii) over land, for nighttime overpasses;
(iii) over ocean, for day time overpasses;
(iv) over ocean, for nighttime overpasses.

CLAVR-1 uses the five AVHRR channels and exploits their
differing sensitivities to different atmospheric conditions. The
approach is based on a multispectral, sequential, decision-tree
algorithm, where three different tests are applied: a) contrast
signature tests, b) spectral signature tests, and c) spatial
signature tests. The resulting cloud mask follows the classifi-
Table 3
Brightness temperature, Tb(saturation), at upper limit of dynamic range of
AVHRR thermal channels (Cracknell, 1997)

Channel Tb (saturation)

3 ∼ 322 K
4 ∼ 323 K
5 ∼ 330 K
cation scheme defined in Table 4. Interested readers may
consult Stowe et al. (1999) for further details.

Following the identification of cloudy and clear pixels, we
create a set of products, scale them and write the data into binary
files. The resulting products are shown in Table 5.

3.1.3. Image geolocation and projection
We geolocate the AVHRR scenes following Rosborough et

al. (1994), adapted to ingest NORAD ephemeris data (Celestrak;
http://www.celestrak.com).We remapped and re-binned the data
into Albers Equal Area projection with an 8 by 8 km grid cell
size such that it is compatible with the GIMMS Normalized
Difference Vegetation Index (NDVI) data set (Tucker et al.,
1994). Where multiple AVHRR pixels are projected into a single
grid cell, we select and store the pixel with the maximum
brightness temperature in channel 5 (T5). We assume that this
sample is least likely to have sub-pixel cloud contamination.

For each grid cell value, we compute the local solar time
(LSTIME) of observation by adjusting the equatorial crossing
time (TIME) files for longitudinal variation for each observa-
tion, according to Eq. (3).

LSTIME ¼ TIME þ LON
15

: ð3Þ

3.2. Estimating LST From AVHRR

To retrieve LST from the AVHRR top-of-atmosphere
brightness temperature measurements, we chose a “split
window” algorithm. This approach, based on an empirical
inverse model, is derived from a first order expansion of the
Taylor series applied to the Planck function. It takes advantage
of the differential atmospheric absorption in two spectrally close
thermal infrared bands to (largely) compensate for the effects of
T4 — Brightness temperature for channel 4 10
T5 s — Brightness temperature for channel 5 10
TV s — View zenith angle 100
TS s — Solar azimuth angle 100
FV s — View azimuth angle 100
FS — Solar azimuth angle 100
LAT — Latitude 100
LON — Longitude 100
TIME — Time of latitudinal crossing 100

⁎ All fields are stored as 2-byte integers.

http://www.celestrak.com
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absorbing gases. In the case of the AVHRR sensors, channels 4
and 5 are used. The algorithm assumes that atmospheric
attenuation (due mostly to atmospheric water vapor) is greater
in channel 5 than in channel 4, and that the difference in
measured radiance between the two channels increases with
increasing water vapor.

For AVHRR, the relationship between LST and measured
brightness temperature in the two channels (T4 and T5) can be
formulated as follows:

LST ¼ T4 þ a1ðT4−T5Þ þ a0; ð4Þ
where coefficient a1 is a constant dependent upon atmospheric
type (e.g. polar, temperate, and tropical) and accounts for water
vapor absorption and atmospheric emission. The relationship
above also accounts, in a static or dynamic way, for the surface
behaving as a selective radiator, i.e. with variable emissivity. In
practice, both a0 and a1 are determined by applying a regression
tomodeled relationships found between the channels' brightness
temperatures for different atmospheric and surface scenarios.
3.2.1. Ulivieri's split window LST algorithm
We adopted the split window algorithm developed by

Ulivieri et al. (1994) due to its simplicity, robustness and
superior performance in independent tests (Becker & Li, 1995;
Vazquez et al., 1997; Yu et al., submitted for publication).
Ulivieri's algorithm can be written as,

LST ¼ T4 þ 1:8ðT4−T5Þ þ 48ð1−eÞ−75De; ð5Þ
where T4 and T5 are the top-of-atmosphere brightness
temperatures of AVHRR channels 4 and 5, respectively and,

De ¼ e4−e5 ð6Þ

e ¼ e4 þ e5
2

ð7Þ

Eq. (5) was developed for cases of column atmospheric
water vapor less than 3.0 g/cm2, a reasonable condition for
much of the semi-arid portions of continental Africa. Becker
and Li (1995) tested the Ulivieri algorithm using four different
data sets as part of an intercomparison between seven different
LST split window algorithms. In all cases, the Ulvieri algorithm
performed well. A later algorithm comparison (Vazquez et al.,
1997) yielded similar results, and indicated that the Ulivieri
algorithm was least dependent on accurate knowledge of
surface emissivity of the algorithms tested. Yu et al. (submitted
for publication) tested the sensitivity of 10 different split
window algorithms to uncertainties in surface emissivity, view
zenith angle, and surface-air temperature differences. They
found Eq. (5) was among the two most stable algorithms.
3.3. Surface emissivity

In the Ulivieri algorithm, surface emittance is represented by
two terms; the first depends upon the average behavior of the
surface as a selective radiator (ε), the second upon its spectral
emittance (Δε). This presents a challenge for an operational
algorithm since there are few global data sets of spectral
emissivity. To our knowledge, none exist at 8 km resolution (or
finer) and for AVHRR channels 4 and 5 at the time this work
was developed.

3.3.1. Development of a moderate resolution emissivity maps
Pixel emissivity is difficult to retrieve remotely since a

brightness temperature measurement represents the convolution
of surface emissivity and the emittance of a blackbody of
unknown kinetic temperature. Thus, in the inverse problem, the
number of unknown variables (emissivity and kinetic temper-
ature) exceeds the number of known data values (measured
brightness temperature). Some methods have been proposed to
estimate emissivity from AVHRR observations (Becker & Li,
1990; Van de Griend & Owe, 1993; Becker & Li, 1995; Sobrino
et al., 2001), but these have not been validated over large scales
(e.g., continents). More sophisticated methods (e.g., Becker &
Li, 1990) are computationally expensive, and require accurate
knowledge of the atmospheric profile as well as the existence of
non-cloudy conditions for a day and night observation pair.

To facilitate the use of Ulivieri's algorithm over Africa, we
developed an emissivity map by combining state-of-the-art land
cover maps with laboratory emissivity spectra. Specifically, we
assume that an AVHRR pixel's emissivity can be estimated as
the spatially-weighted ensemble of its endmember emissivities,
i.e.,

heii ¼
XN
k¼1

eki fk ð8Þ

The pixel ensemble emissivity, 〈εi〉, where i denotes the
thermal channel, is a function of the endmember channel
emissivities, εki, and the fractional cover of the endmembers, fk.
We define an “endmember” as a class of scene components
assumed to have the same emissivity, such as tree crown,
herbaceous background, or bare soil background. We deter-
mined the endmember types and fractions using soil and
vegetation maps, and we determined the endmember emissiv-
ities using spectral libraries.

We prescribed the spatial distribution of soil types using the
FAO Soil Map of Africa (FAO–UNESCO, 1987). For each
type, we estimated the AVHRR band emissivity (Table 6) by
convolving the associated emissivity spectra (available from Jet
Propulsion Laboratory (JPL), www.jpl.nasa.gov) with the
relative spectral response functions for AVHRR/2 channels 4
and 5. Direct association between the FAO soil types and the
JPL spectra was not always possible since the thematic
classification of the spectra is based on the US soil classification
system, whereas FAO uses its own system. In unclear cases, we
associated the soil property descriptions between the two
systems. Where multiple JPL spectra were available for a given
soil class, we averaged the spectra before applying the AVHRR
spectral sensitivity functions.

Extending the static landcover approach of Wilber et al.
(1999), we created two layers of vegetation emissivity for each
pixel: one layer for woody (tree) vegetation and one for

http://www.jpl.nasa.gov
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Table 6
Average emissivities for AVHRR channels 4 and 5 assigned to each soil class

Soil class Emissivity

Channel 4 Channel 5

Mollisols 0.973 0.978
Vertisols 0.973 0.980
Ultisols 0.961 0.975
Inceptisols 0.970 0.974
Alfisols 0.969 0.976
Entisols 0.973 0.980
Solonchaks 0.975 0.975
Aridisols 0.969 0.974
Oxisols 0.977 0.976
Spodosols 0.970 0.971
Histosols 0.973 0.978
Rockland 0.954/0.977 0.940/0.968
Rock 0.954 0.940
Salt 0.975 0.975
Water 0.994 0.986

Note 1: No data available for Oxisoils class. We adopted the emissivity for
Alfisols class which has similar physical description in the epipedon (surface
layer) — “reddish brown fine sandy loam”.
Note 2: Default rockland is granite in all areas, with exception of soils in Kenya
where rockland is assumed to be basalt.
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herbaceous vegetation. To determine the fractional cover of
each layer, we used the continuous field data from Hansen et al.
(2000). We determined the AVHRR emissivity values (Table 7)
according to the convolution approach described above for
soils. We associated the JPL conifer spectra with UMD
evergreen forest class, the deciduous spectra with the deciduous
forest class and the grass spectra with the grassland and
agricultural classes. The reflectance spectra for each of these are
shown in Fig. 3. Emissivity spectra were determined by
subtracting spectral reflectance from unity.

Following Eq. (8), we calculated the ensemble emissivity for
each pixel by weighting the endmember emissivities by their
cover fraction as specified in the UMD continuous field product
for woody cover, bare soil cover and herbaceous cover. By
combining the continuous fields product with a static land cover
data set, we created a fixed emissivity map that responds to both
inter- and intra-class variability. We used this map for all
processed scenes. The results for channel 4 and 5 are shown in
Fig. 4a and b, respectively.
Table 7
Average emissivities for AVHRR channels 4 and 5 assigned to each vegetation
class

Land cover type
(UMD land cover class)

Emissivity

Channel 4 Channel 5

Evergreen forest (1, 2) 0.989 0.991
Deciduous forest (3, 4) 0.974 0.973
Mixed forest (5) 0.982⁎ 0.982⁎

Woodland (6) 0.982⁎ 0.982⁎

Wooded grassland (7) 0.982⁎ 0.982⁎

Closed shrubland (8) 0.982⁎ 0.982⁎

Open shrubland (9) 0.982⁎ 0.982⁎

Grassland (10) 0.982 0.989
Agricultural (11) 0.982 0.989

Note⁎: average of 50% evergreen and 50% deciduous.
3.4. Generation of the continental AVHRR data set

We systematically processed 6 years of daily (day and night)
AVHRR/2 GAC data at 8 km resolution using the processing
chain outlined in Fig. 2. The resulting data set consists of a set of
flat binary data files for each day or night. The science data sets
are stored as two-byte integers, and include the LST, the channel
3, 4 and 5 top-of-atmosphere brightness temperatures, the local
solar time of observation, the cloud mask, and the sun and view
geometries (zenith and azimuth angles). Reference latitude,
longitude and emissivity maps and a land–water mask
accompany these data sets. The 6-year data set is archived at
the Oak Ridge National Lab (ORNL) Distributed Active
Archive Center (DAAC).

4. Product evaluation

Given the lack of suitable independent LST data sets over
Africa, we focused our product evaluation effort on the
effectiveness of the split window algorithm in correcting for
water vapor attenuation rather than determining the LST
uncertainty across the continent. To do so, we compared the
AVHRR/2 LST product to LST field measurements collected
over a savanna near Skukuza, South Africa (inside Kruger
National Park) between March and November of Year 2000.
The evaluation is limited to Year 2000 dates given the
unavailability of field data earlier in the NOAA-14 lifetime.
The Skukuza site features a mixture of combretum and acacia
species sparsely distributed over a grassy background (see Table
8 for surface characteristics, or Scholes et al., 2001 for a general
site description). The vegetation is subjected to extensive
browsing and grazing through the year, and wildfires typically
consume the grasses (but not tree crowns) once during the dry
season (June–September).

4.1. Approach

Given the three-dimensional vegetation structure of the site,
we estimated the fraction of each scene endmember visible to
the AVHRR using the Modified Geometrical Projection (MGP;



Fig. 4. a) Ensemble emissivity maps for AVHRR channel 4 b) and channel 5.
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Pinheiro et al., 2006) model and the sun-view geometry of the
AVHRR observation. The model configuration assumed that the
savanna was composed of just two endmembers (tree crown and
background). Following Pinheiro et al. (2004), we then used a
weighted ensemble method to estimate the pixel-scale radio-
metric temperatures detectable to AVHRR from the field-
measured endmember temperatures.

To assign endmember temperatures, we used field data from
two precision infrared thermocouple transducers (Model IRTS-
P; Apogee Instruments Inc., Logan, Utah), hereafter referred to
as Apogee-TIR sensors, mounted on vertical poles. Each sensor
was aimed at a relatively homogeneous endmember, including a
tree crown (sensor mounted 7 m above target) and a grassy
background (sensor mounted 2 m above target), respectively.
The Apogee TIR sensors collected samples each 10 min, and we
recorded the average of these samples each 30 min. The
manufacturer claims that the accuracy of the IRTS-P is 0.4 °C
from 5 to 45 °C and 0.2 °C from 15 to 35 °C. Independent
analysis confirmed that the measured targets were acceptable
representatives of the populations of endmembers in the area
(Pinheiro et al., 2006). Further details on field site, sensor
configuration, Apogee data processing and results are available
in Pinheiro et al. (2006).

The Apogee-TIR data represent the sum of reflected
irradiance and endmember emittance over the target. After
Table 8
Skukuza vegetation structural characteristics

Parameter Quantity

Maximum height of crown center 8.20 m ⁎

Minimum height of crown center 2.07 m#

Average canopy horizontal radius 2.65 m
Average canopy vertical radius 3 m
Woody cover (tree+shrub) 31%
Tree density 127 ha−1

Maximum tree LAI (February) 0.67
Minimum tree LAI (June) 0.15

⁎ 2/3 of maximum tree height.
# 2/3 of minimum tree height.
converting the Apogee TIR temperature data (K) to flux (W/m2)
using the Stefan–Boltzmann equation, we determine the
endmember emittance by subtracting the reflected irradiance.
To estimate the ensemble emittance 〈Mensemble〉 [W/m2], we
weighted each endmember emittance with the respective
fractional cover and summed the results, i.e.,

hMensemblei ¼ fcrownðrTb4crown−ð1−ecrownÞEatmosAÞ
þ fbackgroundðrTb4background−ð1−ebackgroundÞEatmosAÞ

ð9Þ

where the Tbcrown and Tbbackground are radiometric temperatures
measured by Apogee TIR sensors for crown and background,
respectively, and σ is the Stefan–Boltzmann constant
(5.67×10−8 W m−2 K−4). We calculated the emissivities for
crown and background, εcrown and εbackground, by assuming a
uniform spectral response for the Apogee TIR sensor over its
spectral sensitivity range (6 to 14 μm), and using spectral
reflectance data from the ASTER Spectral Library (http://
speclib.jpl.nasa.gov) and assuming complementarity between
emissivity and reflectance (i.e., Kirchoff's Law). The sky
irradiance, Eatmos↓ [W/m2], was measured by a pyrgeometer
(Model CG1, Kipp and Zonen, Delft, Holland) mounted on a
nearby tall tower. The pyrgeometer measured infrared (5 to
45 μm) radiant flux to an accuracy specified of +10%.
Although the Apogee-TIR sensors and pyrgeometer were
sensitive to different spectral windows, no data adjustment was
attempted.

To estimate the ensemble LST, we divided the ensemble
emittance by the ensemble emissivity and the Stefan–
Boltzmann constant, and took the fourth root, i.e.,

hTensemblei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hMensemblei

rhei
4

s
ð10Þ

where the ensemble emissivity, 〈ε〉, is estimated as

hei ¼ e f þ e f : ð11Þ
crown crown background background

http://speclib.jpl.nasa.gov
http://speclib.jpl.nasa.gov


Fig. 5. Seasonal cycle of water vapor content for the year 2000 retrieved by the AERONET at the Skukuza site. It is clear that the Ulivieri split window algorithm
threshold of 3 cm is violated from about October to May. Modified from http://aeronet.gsfc.nasa.gov/.
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Clearly, these statistically-based estimations (including mean
wide-band emissivities) are not as rigorous as line-by-line
calculations, however we believe the cumulative uncertainty is
commensurate with the other uncertainties (e.g., spatial scale
differences) in this comparison.

5. Results

We compared 〈Tensemble〉 from Eq. (10) with the pixel value
from our AVHRR/2 LST product for a series of days in Year
2000. The AVHRR LST had a relatively low overall bias, in all
cases below 0.3 K. The uncertainty, defined here as the root
310

305

300

295

290

285

280
160 180

Day

160 180

Day

Te
m

pe
ra

tu
re

 (
K

)
Te

m
pe

ra
tu

re
 (

K
)

295
290

285

280

275

270

265

260

Fig. 6. Comparison of field derived ensemble surface temperature (–) and AVHRR LS
conditions (Δ) AVHRR retrievals are distinguished.
mean square error (RMSE), for the entire period was 1.24 K for
daytime observations and 2.38 K for nighttime observations.

As noted above, the Ulivieri split window algorithm was
developed for atmospheric conditions with column water vapor
less than 3 g cm−2. AERONET sunphotometer (Holben et al.,
1998) data in year 2000 indicate that this condition was often
violated at Skukuza. Violations particularly occurred during the
wet season (∼ October through April) as shown in Fig. 5.
Therefore, we independently evaluated the AVHRR/2 LST
product performance under dry season conditions (i.e., ∼ June
through August; Fig. 6). In this case, the RMSE was 0.92 and
2.46 K for the day and night, respectively (see Table 9).
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Table 9
Error statistics determined through comparisons of AVHRR LST and field-
measurements

Bias
(mean)

Precision
(SD)

Uncertainty
(RMSE)

All samples
Daytime (N=94⁎) 0.15 0.79 1.24 K
Nighttime (N=97⁎) 0.29 1.53 2.38 K

Dry season subset (June 1st–August 31st 2000)
Daytime (N=45⁎) 0.08 0.40 0.92 K
Nighttime (N=38⁎) 0.17 1.00 2.46 K

⁎N = number of clear sky data points used to determine the statistical values.
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The improvement in product performance is clear, although
the uncertainty (RMSE) during nighttime condition inexplica-
bly increased slightly.

6. Discussion

Our validation results are encouraging, however they are
quite limited and must be viewed with significant caution given
the mismatch in scale between the endmember temperature
measurements (100 m2) and the AVHRR/2 LST grid cell
(107 m2). Further, the LST uncertainties must be considered in
light of typical LST applications. For example, a 0.5 K LST
error can lead to a 10% error in sensible heat flux (Brutsaert et
al., 1993), a 1 K error can result in a 10% error in
evapotranspiration (Moran & Jackson, 1991), and 1–3 K errors
can lead to surface flux errors of up to 100 W/m2 (Kustas &
Norman, 1996). In this sense, our products are best used for
relative assessments, such as comparisons in space or time,
rather than for absolute values. This is probably true for any
satellite-derived LST product at present. Below we describe the
key error sources in our methodology.

Inspection of the area using aerial photography and Landsat
imagery suggests that the Skukuza field site area (at the scale of
the AVHRR pixel) is heterogeneous. Natural variability within a
given endmember class (e.g., tree crown) creates uncertainty in
the representativeness of the point sampling. Pinheiro et al.
(2006) showed that the Apogee values were within about one
standard deviation of the mean for the endmember population,
however that evaluation only considered endmembers at
equally-spaced points within a limited grid (105 m2) and for
limited time periods.

Further, our field-derived temperature estimation ignores the
vertical profile of the vegetations' temperature and does not
differentiate between sunlit and shaded surfaces. Still, temporal
temperature profiles suggest the latter effect is less significant at
the drifted AVHHR overpass times (around 16:00 in Year 2000)
compared to immediate postlaunch overpass times (Pinheiro et
al., 2004). A more comprehensive field data set would likely
provide much better insight into performance of the AVHRR
LST product and potentially allow us to prioritize the error
sources noted below.

As shown in Table 9, our AVHRR LST is more accurate in
the dry (winter) season when the atmosphere is colder and
contains less water vapor. In general, the precision of any split
window LST algorithm degrades in warmer temperatures (290–
305 K) and with larger view zenith angles. Both conditions tend
to result in greater gaseous absorption along the observation
path, and increasingly second-order atmospheric effects not
captured in simple split window formulations result in
performance degradation.

The poorer nighttime results, versus those in the daytime,
were not expected because more uniform radiative cooling
processes dominate and the range of endmember temperatures
is more limited at night. Our results may have been caused by
poor detection of (sub-pixel) clouds at night, since CLAVR
accuracy degrades at night in mid-latitudes (Stowe et al., 1999).

Recent work (Yu et al., submitted for publication) demon-
strates the high sensitivity of split window LST algorithms to
surface emissivity accuracy. Although we developed an
emissivity database in the present work that partly accounts
for variable canopy types and fractional covers and different soil
types, it represents only a rough estimation. It relies on a
remotely-sensed UMD continuous fields product of unknown
accuracy, and on laboratory emissivity data that likely differ
significantly from aggregate canopy values. Further, the extent
of the laboratory spectral library is obviously limited. All of
these data sets are static and therefore we do not account for
local phenological and environmental changes in time. To our
knowledge, recent efforts to develop continental scale emissiv-
ity maps based on the MODIS emissivity product remain
unvalidated to date. However, advances by both the MODIS
and ASTER teams suggest that accurate and dynamic emissivity
maps may be possible in the coming years.

Finally, there are limitations with the AVHRR sensor itself.
The absolute radiometric accuracy of AVHRR is approximately
0.55 K (Weinreb et al., 1990). Further, AVHRR band-to-band
collocation errors (approximately 0.1 mrad) can produce errors
in LST of about ±0.1 K for a structured scene with a mean
temperature of 300 K and inter-pixel spatial variability of 10 K
(Prata, 1994). In the same study, Prata (1994) reports that
georegistration errors may average ±0.5 K for day time
observations and ±0.2 K for nighttime observations. Readers
should consult Prata (1994) for a detailed analysis.

Clearly, validation of any continental-scale LST product is
challenging since LST can vary significantly within a pixel area
and change within relatively short time periods. Moreover, the
number of in situ observations that match satellite observations
in both time and space is limited. Unfortunately, the validated
LST products from the Earth Observing System (EOS; e.g.,
Wan et al., 2002) overlapped the NOAA-14 operational lifetime
only in year 2000. By that point, the NOAA-14 equator crossing
time had drifted to late afternoon (after 1600 h). Thus, LST
products from EOS Terra (equator crossing at 1030 h) could not
be credibly used. Further validation work, conducted under
many different conditions (e.g., at the scale of EOS validation;
Morisette et al., 2002), is needed before we can confidently
assign uncertainties to this data set.

It is important to remind readers to use caution in any use of
an AVHRR-derived LST or SST data set. As noted above,
equator crossing times of NOAA afternoon satellites drift
substantially with time past launch. Although the nominal,



Fig. 7. Composite AVHRR-derived land surface temperature for a) July 1996 (overpass around 1:30 PM) and b) July 2000 (overpass around 4:00 PM). The
compositing process (maximum temperature over the month was retained) removed most of the clouds. However, some clouds are visible (blue areas) near the equator
in b). We did not use information available in our product's auxiliary cloudiness field for this demonstration. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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immediate post-launch crossing time for NOAA-14 was
1330 PM, the orbit degraded at a rate of approximately 1/2 h
per year thereafter (Price, 1991; Privette et al., 1995). As the
orbit decays, the LST values trend to lower values as shown in
Fig. 7. The apparent cooling is due to mechanical causes (the
drift in AVHRR overpass time) rather than natural causes.
Several correction approaches have been published (Gutman,
1999; Jin and Treadon (2003), although each requires
significant assumptions which tend to be violated on a per-
pixel scale.

A second AVHRR temporal sampling issue is more
insidious. Since AVHRR scans the earth's surface with angles
of ±55° from nadir (equivalent to ±68° on the surface), an
AVHRR swath crosses more that 2.5 time zones (i.e., 2.5 h local
time) at the equator. Thus, pixels on opposites edges of a single
Fig. 8. Daily daytime AVHRR a) Land Surface Temperature (LST) and b) view
zenith angle for Ghanzi, Botswana.
AVHRR scan may be sampled at significantly different local
solar times. The consequent differences in solar zenith angles
and heating periods (thermal inertia effects) can lead to
systematic temperature differences.

Lastly, given the AVHRR wide field of view and NOAA
orbit periodicity of 9-days, AVHRR effectively observes the
same earth target under the same geometric (observation and
illumination) conditions once each 9 days. Pinheiro et al.
(2004) recently showed that variation in observation and
illumination geometry of AVHRR sampling leads to measur-
able artifacts in LST estimates in the presence of structured
vegetation. These angular effects, identified in previous studies
(e.g., Caselles & Sobrino, 1989), can lead to systematic LST
biases, including ‘hot spot’ effects when no shadows are
observed. In the case of a woodland area, ‘hot-spot’ values
(where the solar and view vectors coincide and therefore no
shadows are visible) were up to 9 K higher than those at non-
hot spot geometries. Fig. 8 illustrates an example of the angular
dependency of AVHRR LST retrievals over sparse vegetations,
in this case in Ghanzi, Botswana, a shrubland surface in
southern Africa. The daily daytime values of AVHRR LST
depict a similar pattern to the distribution of view zenith angles
over time.

7. Conclusions

We have developed a new daily, daytime and nighttime,
AVHRR/2 Land Surface Temperature (LST) product based on
Global Area Coverage (GAC) data over continental Africa. The
production system borrows many validated segments from
NASA's GIMMS system, which is used to produce high level
AVHRR vegetation index products. We augmented this system
with published cloud clearing (CLAVR-1) and LST split
window (Ulivieri et al., 1994) algorithms. In addition, we
developed new emissivity maps of Africa for AVHRR channels
4 and 5 by combining laboratory field spectra with estimates of
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each grid cell's fraction of exposed soil, understory and
overstory vegetation. The resulting processing chain is
relatively fast and provides helpful ancillary products, including
the sun-view geometry, the time of observation, the top-of-
atmosphere brightness temperatures in channels 3, 4 and 5, and
a cloud mask. Limited quality assurance data accompanies the
product. We evaluated the product at one grid cell (8×8 km)
over a savanna field site near Skukuza, South Africa.
Independent LST estimates derived from field-base endmember
measurements suggest the AVHRR product over that site has an
uncertainty below 1.5 K for daytime retrievals and below 2.5 K
for nighttime retrievals. The product accurately tracked
warming and cooling trends in surface temperature. Still, a
more robust validation program is required before more
substantive error estimates can be stated.

The data set developed through this article appears to be
satisfactory for large scale analysis of LST trends in time and
space. Indeed, it has already been used to reveal LST variability
with vegetation structure under different sun-view geometries. It
benefits from reuse of proven processing software and consistent
algorithm application. Further, it is the only daily (day and night)
LST data set for the 1995–2000 time period over Africa of which
we know. The complete data set and a user guide are now
available through the ORNL DAAC. Readers are urged to heed
the cautions in the Discussion concerning product accuracy.
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